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A best matrix approximation technique for updating the analytical model is
developed using the known modal parameters. Firstly, the known modal matrix
is decomposed by means of the singular-value decomposition technique.
Secondly, the general updating equations for the analytical model are obtained
on the basis of the singular-value decomposition results, the eigenequation, and
the modal orthogonality relations. Thirdly, the best updating solution is defined
according to the best approximation theory, and the existence and uniqueness
of the best modification results relative to the analytical model are studied.
Finally, the concrete form of the best modification and two updating
algorithms are presented. Numerical examples demonstrate that the proposed
method possesses high modificatory accuracy compared with some other
methods, and it possesses the ability to modify larger error models.

© 1999 Academic Press

1. INTRODUCTION

The finite element technique has been widely used to perform static and dynamic
analysis in various fields for a long time. The accuracy of the analysis result
depends heavily on the knowledge and experience of setting up an accurate
model as well as the limitations of individual finite element code. In recent
decades, dynamic characteristics of mechanical systems such as natural
frequencies and mode shapes can be estimated accurately by modal testing [1].
Ideally, the modal parameters obtained from the analytical model and modal
testing should be reasonably close to each, provided that the modal testing is
performed carefully. However, most modal data obtained by the analytical
model do not agree with those measured by modal testing. Therefore,
modification of the original analytical model is necessary in order to obtain the
most accurate and reliable model.

In the past, various methods have been proposed to minimize the difference
between the analytical and the testing data. Baruch and Itzhack [2] assumed that
the mass matrix is correct and introduced a constrained minimization procedure
to modify the stiffness and flexibility matrices. Berman [3] introduced a
formulation that modifies the mass matrix and assumed that the measured
modes are exact. Subsequently, Berman and Nagy [4] combined the mass matrix
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adjustment procedure of reference [3] with the stiffness matrix adjustment
procedure of reference [2] to establish the so-called analytical model
improvement (AMI) procedure. Ross [5] introduced a procedure for deriving
both the mass and stiffness matrices from measured natural frequencies and a
square modal matrix composed of measured mode vectors supplemented by
arbitrary linearly independent vectors. A similar concept was developed by Zak
[6] who supplements the measured mode data with information from analytically
predicated modes. In addition, identification procedures based on matrix
perturbation theory have been proposed by Chen and Garba [7], and Chen et al.
[8]. Kabe [9] introduced a procedure that uses the mode data and structural
connectivity information to optimally adjust deficient stiffness matrices. The
adjustments performed are such that the percentage change to each stiffness
coefficient is minimized. In reference [10], Caesar gave an overview on the
methods used for the generation of system matrices fitted to test results by
updating and direct identification of dynamic mathematical models. A more
general mathematical formulation of the linear least squares problem was
discussed. Wei and Zhang [11] introduced an analytical mass matrix
modification procedure using the element correction method. This method
preserves the original characteristics of the mass matrix. Wei [12] presented a
dynamic model improvement method based on the Lagrange multiplier method.
The dynamic equation and the orthogonality constraints are satisfied during the
analytical derivation. Zhang et al. [13] developed a best matrix approximation
technique to modify the analytical model, in which the interaction effects of
mass stiffness matrices are taken into account, but the weight matrix is not
included. Guo and Hemingway [14] introduced an orthogonality sensitivity
method for analytical dynamic model correction using modal test data in the
same reference. The method is valid for model correction in conjunction with the
reduction method. Chen et al. [15] presented a two-stage method of updating the
finite element model, in which the local physical parameters and the structural
joint parameters are corrected using the dynamic test data.

In this paper, a new analytical model updating method is developed on the
basis of the theory of the singular-value decomposition and the matrix
approximation technique. In this method; the identified modal matrix is
decomposed by means of the singular-value decomposition technique. The
general updating equations for the analytical model are obtained according to
the decomposition results, the eigenequation of the system, as well as the modal
orthogonality relations. The existence and uniqueness of the best approximation
relative to the analytical model are studied, and the concrete form of the best
modification and two algorithms are presented. Examples demonstrate that the
new model modification method possesses high modificatory accuracy compared
with some other methods, and it possesses the ability to modify larger error
models.
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2. UPDATING THEORY

Let R"*™ represent the set of nxm real matrix, SR"*” represent the set of
nxn symmetric real matrix, and I, represent the m xm identity matrix.
[Kol € SR™™", [Mo] € SR"*" represent the mass and stiffness matrices of the
analytical model, [K]€ SR"*", [M]€ SR"*" represent the modified matrices
corresponding to matrices [My], [Koy], and [®@] € R**™, [A] € SR™*™ represent the
tested eigenvector matrix and eigenvalue matrix. The term m is the number of
the tested modes, and 7 is the dimension of the system. The system should satisfy
the following eigenequation and orthogonality relations

[K][@] = [M][@][4], (1)
(@] [M][@] = I, (2)
[@]' [K][@] = [A] (3)

As the eigenvectors are linear independent, so the matrix [@] is full column
ranked, i.e., rank [®@]=m. From the singular-value decomposition technique [16],
the eigenvector matrix [@] can be expressed as:

)= 1o | 01" @)

where matrices [U] and [V] are nxn and mxm orthogonal matrices,
D =diag[oy, o, ..., a,], and « is the positive singular-value.

Substituting equation (4) into equation (1), and premultiplying matrix JU]"
yields:

K Ki|[D My M D
P v | ! (5)
where
K K T
| - ©)
e | = )
From equation (5) one can obtain:
[Kn][DIN" = [M][D][' (4], (8)
(K| [D][V]" = [Ma][D][V]"[A]. 9)

Substituting equation (4) into equation (1), and considering equations (6) and
(7) yields:

[Mu] = [D]'[D]". (10)
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From equations (8) and (9) one can obtain:

[Ku] =[P D AT (D] (11)

(K] = M) [D)V]' [A][V) D] (12)

By substituting equation (4) into equation (3), one can also obtain equation
(10), which indicates that matrices [M] and [K] obtained from equations (1) and
(2) will satisfy equation (3) automatically. From the above process, the following
conclusion is obtained.

Conclusion 1. Given eigenvector matrix [@] and eigenvalue matrix [4], using
the singular-value decomposition relation (4), one can obtain the solution set of
equations (1)—(3) G([M], [K]), in which [M] and [K] can be expressed as:

K= R | (13
=11 3t e, (14

where the submatrices [M], [Ki1], [K2i] are determined by equations (10), (11)
and (12).

Now, the best modification result which satisfies the following definition will
be discussed.

Definition. Let [Mo], [Ko] be the mass matrix and the stiffness matrix of the
analytical model, then matrices ([M], [K]) € G are said to be the best
approximation updated matrices of [M,] and [Ky] if ([M], [K]) satisfy the

relation:

IN(K = Ko)N|[r + | N(M — Mo)N||r

= inf (|IN(K—-Ko)N N(M — My)N 15
([MfrwlImeG(H ( oWWile + [N oINIe) )

i.e., ([M], [K]) are the best approximation matrices of [M,], [Ko] in set G, where
|l®|| - indicates the Frobenius norm [16] and [N] is the weight matrix. According
to the problem, the weight matrix can be the identity matrix, diagonal matrix, or
[Mo] "% and [Ko] 2.

Theorem. Given the mass matrix and the stiffness matrix of the analytical
model [M] and [K,], then the best updated matrices ([M], [K]) that satisfy the
above definition in set G exist uniquely.

Proof. Since set G is a solution set of equations (1-3), then set G is a linear
subspace of SR"*"x SR"*". Because set G is a convex set, and G is a finite
dimension set, set G is compact. According to the projection theorem (see
Appendix) of the inner product spaces [17], it can be concluded that there exists
a unique best updated ([M, [K]) for [M,] and [Ko] in set G.
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The above theorem indicates that the best update satisfying the definition for
the analytical model exists uniquely.
From equations (6), (7) and (15), one can obtain:

S=IIN(K — Ko)N°||7 + | N(M — Mo)N|[3

_ HN(U[K” K”] Ut - [Ko])N :

Ky K»n F
My M :
+HN(U[ " lz]UT—[M0]>N . (16)
My My F
Expressing the orthogonal matrix [U] in the blocked form:
[U] = [U; : U] (17)

Substituting equation (17) into equation (16) yields:

+ [N][Mo][NT*[Mo][N]
+ A[N][UL][M 1] U] T[N [Ua] [Mon] [U] T [N]

+ 2[N][U][M1 ][O [NP[Us) [M2] [Ua] T [N]
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M][Us] [N [Mo][N)), (18)
where
[D\] = DIV [A][V) " [D) (19)

Differentiate equation (18) with respect to matrices [K>], [M»,], [M>;] and let
them equal zero. One can obtain:

K22 = [4]7 (U] [N [Ko][N*[U2] = [Cl[Kn][C]"

= 2[C[D\]" (M) [A])[4] (20)

(M) = [A)”([U] [NT?[Mo][N]*[U2] — [CIIK][CT

= 2[C)[M]" [4])[4]", (1)

(22)

where

[C] = [ [NP[Uh).

When the weight matrix is the identity matrix, equations (20), (21) and (22)
can be simplified as:

(K] = [Koxa] = [Us]' [Ko] (U], (23)



MATRIX APPROXIMATION METHOD 765

[M] = [Mo] = [Us]" [M][U]. (24)

[My1] = L (U] [Mo][U1] + (U2 [Ko) [UN[D1] ") (I + [D1][D1]T) 1 (25)

From the results, the following conclusion is obtained.

Conclusion 2. Given the mass matrix and the stiffness matrix of the analytical
model [M,] and [K,], the best updated matrices ([M], [K]) that satisfy the
definition in set G exist uniquely. The updated results can be expressed as:

o) = (01| DRIP4 g 26

2 DI VAT DT DYMG, |
K| = [ ) 121 b
SR B ity @)
where [K»»], [Mas], [M>] are calculated from equations (20), (21) and (22).

According to conclusions 1 and 2, the basic updating algorithm can be
summarized as follows.

Algorithm 1

(1) Obtain the initial mass matrix and stiffness matrix of the analytical model
using the finite element method etc.

(2) Obtain the modal parameters [@] and [4] from mode tests.

(3) Decompose matrix [@] using the singular-value decomposition technique,
and calculate the terms: [U]'[Ko][U] and [U]'[M,][U].

(4) Calculate [K»], [M2], and [M>,] from equations (20), (21) and (22);

(5) Calculate [M] and [K] from equations (26) and (27).

From algorithm 1 it is known that the modification results [M] and [K] are full
matrices. In order to make matrices [M] and [K] have the same band form as
that of [M,] and [Kj), an iterative algorithm is developed based on algorithm 1.

Algorithm 2

(1) Calculate [M],, and [I%],, using algorithm 1 according to the given terms [®],
[4], [M,] and [K,)], where p is the iterative number,

(2) Ignore the elements of the matrices [M]p and [k]p that do not belong to the
band of the matrices [M,] and [K,]. The new matrices are named [M], and [K],.

(3) Calculate [®]"[M],[®] =[m], and [®][K],[®] =[],

(4) Determine if the following condition is satisfied:

Imy| <er, |kyl<ex, i,j=1,2, ..., m, i #], (28)

where ¢; and &, are two prescribed tolerances If the condition (28) has been
satisfied, then the iteration is finished. Otherwise let [M,] =[M],, [Ko] =[K],, and
go back to step (1).



766 ZHANG XIANMIN
3. NUMERICAL EXAMPLES

Several numerical examples are presented to demonstrate the feasibility of the
model updating method.

Example 1. A lumped mass matrix and a finite element stiffness matrix were
developed as an analytical model. The two matrices are as follows:

[My] = diag[21, 19, 1-1, 0-9)],

51 =40 10 00
—40 61 —40 10
10 —40 61 —40
00 10 —40 51

[Ko] =

The first two modal parameters are shown in Table 2. Table 1 gives the
modification results of the Berman method [4] and algorithm 1 of the new
method.

The relative errors of eigenvalues and eigenvectors are as follows [13]:

o — o]

relative error of eigenvalue = x 100%, (29)

(OF

| @ — |

1/2
x 100%, (30)
I o | )

relative error of eigenvector = <

where w, and {®,} are the experimental results, and w and {&} are the analytical
results.

Table 2 indicates that the modificatory accuracy of the presented method is
significantly improved when compared with the Berman method. Substituting

TABLE 1

Modification results of the mass matrix and stiffness matrix

Model
updating Results of mass Results of stiffness
method matrix matrix

Berman 2:0912 —0-0028 0:0044 0-0044 51679 —4-0488 0-9097  0-0668
AMI 0-0028  1-8993 0:0016 0-0016 —4-0488  6:0373 —4:0276  1-0191
method 0-0044 0-0016 1-:0981 —0-0020 09097 —4:0276 6-1274 —4-0531

0-0044 0-0016 —0-0020 0-8979 0-0668 1-:0191 —4-0531 4-9712

The new 2:0640 —0-0008 0-0358 —0-0011 50736 —4-0434 0-9842 0-0330
method  —0-0008  1-9031 —0-0003 —0-0131 —4-0434 6-0383 —4-0275 1-0095
0-0358 —0-0003 1:0613 0-0019 09842 —4-0275 6:0735 —4-0437
—0:0011 —0-0131 0-0019 09587 0-0330 1-0095 —4-0437 5:0145
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TABLE 4
Comparison of the modal parameters before and after modification

Relative errors (%)

Algorithm 1 Algorithm 1
Modal Analytical Tested of the Analytical of the
parameters model value new method model new method
Eigenvalues (Hz) 1 9-19493 899104 8:99104 2:27 0-0
2 2520976  27-85248 27-85248 9-49 0-0

0-63745 0-62550 0-62550
0-63408 0-62079 0-62079
0-61390 0-60206 0-60206
0-58722 0-57881 0-57881
1 0-52944 0-51779 0-51779 3-12 0-0
0-46604 0-44898 0-44898
0-39770 0-37679 0-37679
0-31251 0-29137 0-29137
0-21076 0-19498 0-19498
0-10566 0-09761 0-09761
Eigenvectors
—0-59230 —0-58377 —0-58377
—0-56871  —0-54160 —0-54160
—0-43188  —0-38207 —0-38207
—0-26065  —0-19495 —0-19495
2 0-01439 0-11421 0-11421 16-13 00
0-28827 0-40688 0-40688
0-53920 0-67015 0-67015
0-61833 0-70753 0-70753
045122 0-48939 0-48939
0-23019 0-24767 0-24767

the results from Table 1 into equation (18), one can obtain the Frobenius norm
of the Berman method fzrriran. and the Frobenius norm of the new method
fsvp as follows:

fERMAN = 0:2665033, fgyp = 0-2521787. (31)

From equation (31) it is known that fzzraran > fsrp, Which indicates that the
modification result of the Berman method is not the best modification result for
the analytical model.

In order to test the ability of modifying a larger error model for the new
method of this paper, the errors of matrices [M,] and [K,] are amplified as
follows:
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TABLE 5
Modal parameters before and after modification of algorithm 2

Algorithm 2 Relative errors (%)
Modal Analytical Tested of the
parameters model value new method Analytical Algorithm 2
Eigenvalues (Hz) 1 9-19493 899104 9:09650 2:27 1-17
2 2520976  27-85248 27-50197 9-49 1-26

0-63745 0-62550 0-62550
0-63408 0-62079 0-62079
0-61390 0-60206 0-60206
0-58722 0-57881 0-57881
1 0-52944 0-51779 0-51779 312 0-49
0-46604 0-44898 0-44898
0-39770 0-37679 0-37679
0-31251 029137 0-29137
0-21076 0-19498 0-19498
0-10566 0-09761 0-09761
Eigenvectors
—0-59230  —0-58377 —0-58377
—0-56871  —0-54160 —0-54160
—0-43188  —0-38207 —0-38207
—0-26065  —0-19495 —0-19495
2 0-01439 0-11421 0-11421 1613 1-26
0-28827 0-40688 0-40688
0-53920 0-67015 0-67015
0-61833 0-70753 0-70753
0-45122 0-48939 0-48939
0-23019 0-24767 0-24767

[M,] = diag[2-4, 1-7, 1'5, 0-§],

55 —42 111 00
—42 67 —43 10
10 —43 65 —44
00 10 —44 56

[Ko] =

The two matrices are modified on the basis of the first two modal eigenvalues
and eigenvectors listed in Table 2. The comparisons are shown in Table 3, which
indicate that algorithm 1 of the new method reproduces the eigenvalues and
eigenvectors accurately once again, and the Berman method possesses larger
modification errors.

Example 2. The first two eigenvalues and eigenvectors of the system are tested
and listed in Table 4. The mass matrix of the analytical model is as follows:

(M) = diag[0-1, 05, 0-2, 1-0, 0-2, 0-2, 0-8, 1-0, 0-3, 0-1]
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4. CONCLUSION

A new analytical model updating method is developed on the basis of the
theory of the singular-value decomposition and the matrix approximation
technique. In this method, the identified modal matrix is decomposed by means
of the singular-value decomposition technique. The general updating equations
for the analytical model are obtained according to the decomposition results, the
eigenequation of the system, as well as the modal orthogonality relations. The
existence and uniqueness of the best approximation relative to the analytical
model are studied, and two model updating algorithms are presented. Examples
demonstrate that the new model updating method is effective, and possesses the
ability to modify larger error models.
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APPENDIX:

Theorem (the projection theorem) [17]. Let W be a closed subspace of a
Hilbert space H and let X € H be a vector not in W. Then there exists a unique
vector Yy € W such that

d(X, W) = inf | X = Y]=| X - Yo .

Proof. Choose a sequence of vectors Y® ¢ W such that

lim X — YW= d.

By the parallelogram law
IYS — YOI =20 y® — x| +2) YV — X|? — (YO - X) + (YW — x))?

. Y 1 y0)
=2 Y0 — x| +2vY - x| —4H+ - X‘ ‘

Since W is a linear subspace, 3(Y® + Y) € W for all k, j and from the meaning
of d, it follows that

oo
giving
YO — ¥y <2 YO — X7 +2| YV - X|* —4d.
Since
1Y® — x| —a?

as k —o0, one may conclude that {Y®} is a Cauchy sequence in W. But W is a
closed subspace of the complete space H. Hence, the sequence has a limit Y, € W.
By the continuity of the norm, d= | Y, — X]|.

Suppose there is another vector Z, € W such that d=||Z, — X||. Then

1Yo = Zo|1* = 21| Yo — X|* +2[|Zo — X|* — || Yo + Zo — 2X]|?

Yo+ 2

=4d% — 4
=

Ao

which implies that Y, is unique.
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