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A best matrix approximation technique for updating the analytical model is
developed using the known modal parameters. Firstly, the known modal matrix
is decomposed by means of the singular-value decomposition technique.
Secondly, the general updating equations for the analytical model are obtained
on the basis of the singular-value decomposition results, the eigenequation, and
the modal orthogonality relations. Thirdly, the best updating solution is de®ned
according to the best approximation theory, and the existence and uniqueness
of the best modi®cation results relative to the analytical model are studied.
Finally, the concrete form of the best modi®cation and two updating
algorithms are presented. Numerical examples demonstrate that the proposed
method possesses high modi®catory accuracy compared with some other
methods, and it possesses the ability to modify larger error models.

# 1999 Academic Press

1. INTRODUCTION

The ®nite element technique has been widely used to perform static and dynamic
analysis in various ®elds for a long time. The accuracy of the analysis result
depends heavily on the knowledge and experience of setting up an accurate
model as well as the limitations of individual ®nite element code. In recent
decades, dynamic characteristics of mechanical systems such as natural
frequencies and mode shapes can be estimated accurately by modal testing [1].
Ideally, the modal parameters obtained from the analytical model and modal
testing should be reasonably close to each, provided that the modal testing is
performed carefully. However, most modal data obtained by the analytical
model do not agree with those measured by modal testing. Therefore,
modi®cation of the original analytical model is necessary in order to obtain the
most accurate and reliable model.
In the past, various methods have been proposed to minimize the difference

between the analytical and the testing data. Baruch and Itzhack [2] assumed that
the mass matrix is correct and introduced a constrained minimization procedure
to modify the stiffness and ¯exibility matrices. Berman [3] introduced a
formulation that modi®es the mass matrix and assumed that the measured
modes are exact. Subsequently, Berman and Nagy [4] combined the mass matrix
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adjustment procedure of reference [3] with the stiffness matrix adjustment

procedure of reference [2] to establish the so-called analytical model

improvement (AMI) procedure. Ross [5] introduced a procedure for deriving

both the mass and stiffness matrices from measured natural frequencies and a

square modal matrix composed of measured mode vectors supplemented by

arbitrary linearly independent vectors. A similar concept was developed by Zak

[6] who supplements the measured mode data with information from analytically

predicated modes. In addition, identi®cation procedures based on matrix

perturbation theory have been proposed by Chen and Garba [7], and Chen et al.

[8]. Kabe [9] introduced a procedure that uses the mode data and structural

connectivity information to optimally adjust de®cient stiffness matrices. The

adjustments performed are such that the percentage change to each stiffness

coef®cient is minimized. In reference [10], Caesar gave an overview on the

methods used for the generation of system matrices ®tted to test results by

updating and direct identi®cation of dynamic mathematical models. A more

general mathematical formulation of the linear least squares problem was

discussed. Wei and Zhang [11] introduced an analytical mass matrix

modi®cation procedure using the element correction method. This method

preserves the original characteristics of the mass matrix. Wei [12] presented a

dynamic model improvement method based on the Lagrange multiplier method.

The dynamic equation and the orthogonality constraints are satis®ed during the

analytical derivation. Zhang et al. [13] developed a best matrix approximation

technique to modify the analytical model, in which the interaction effects of

mass stiffness matrices are taken into account, but the weight matrix is not

included. Guo and Hemingway [14] introduced an orthogonality sensitivity

method for analytical dynamic model correction using modal test data in the

same reference. The method is valid for model correction in conjunction with the

reduction method. Chen et al. [15] presented a two-stage method of updating the

®nite element model, in which the local physical parameters and the structural

joint parameters are corrected using the dynamic test data.

In this paper, a new analytical model updating method is developed on the

basis of the theory of the singular-value decomposition and the matrix

approximation technique. In this method; the identi®ed modal matrix is

decomposed by means of the singular-value decomposition technique. The

general updating equations for the analytical model are obtained according to

the decomposition results, the eigenequation of the system, as well as the modal

orthogonality relations. The existence and uniqueness of the best approximation

relative to the analytical model are studied, and the concrete form of the best

modi®cation and two algorithms are presented. Examples demonstrate that the

new model modi®cation method possesses high modi®catory accuracy compared

with some other methods, and it possesses the ability to modify larger error

models.
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2. UPDATING THEORY

Let Rn6m represent the set of n6m real matrix, SRn6n represent the set of
n6n symmetric real matrix, and Im represent the m6m identity matrix.
[K0]2SRn6n, [M0]2SRn6n represent the mass and stiffness matrices of the
analytical model, [K]2SRn6n, [M]2SRn6n represent the modi®ed matrices
corresponding to matrices [M0], [K0], and [F]2Rn6m , [L]2SRm6m represent the
tested eigenvector matrix and eigenvalue matrix. The term m is the number of
the tested modes, and n is the dimension of the system. The system should satisfy
the following eigenequation and orthogonality relations

�K��F� � �M��F��L�, �1�

�F�T�M��F� � Im, �2�

�F�T�K��F� � �L�: �3�
As the eigenvectors are linear independent, so the matrix [F] is full column

ranked, i.e., rank [F]�m. From the singular-value decomposition technique [16],
the eigenvector matrix [F] can be expressed as:

�F� � �U� D
0

� �
�V�T, �4�

where matrices [U] and [V] are n6n and m6m orthogonal matrices,
D� diag[a1, a2, . . . , am], and a is the positive singular-value.
Substituting equation (4) into equation (1), and premultiplying matrix ]U]T

yields:

K11 K12

K21 K22

� �
D
0

� �
�V�T � M11 M12

M21 M22

� �
D
0

� �
�V�T�L�, �5�

where

K11 K12

K21 K22

� �
� �U�T�K��U�, �6�

M11 M12

M21 M22

� �
� �U�T�M��U�: �7�

From equation (5) one can obtain:

�K11��D��V�T � �M11��D��V�T�L�, �8�

�K21��D��V�T � �M21��D��V�T�L�: �9�
Substituting equation (4) into equation (1), and considering equations (6) and

(7) yields:

�M11� � �D�ÿT�D�ÿ1: �10�



762 ZHANG XIANMIN

From equations (8) and (9) one can obtain:

�K11� � �D�ÿT�V�T�L��V�ÿT�D�ÿ1, �11�

�K21� � �M21��D��V�T�L��V�ÿT�D�ÿ1, �12�
By substituting equation (4) into equation (3), one can also obtain equation

(10), which indicates that matrices [M] and [K] obtained from equations (1) and
(2) will satisfy equation (3) automatically. From the above process, the following
conclusion is obtained.

Conclusion 1. Given eigenvector matrix [F] and eigenvalue matrix [L], using
the singular-value decomposition relation (4), one can obtain the solution set of
equations (1)±(3) G([M], [K]), in which [M] and [K] can be expressed as:

�K� � �U� K11 K12

K21 K22

� �
�U�T, �13�

�M� � �U� M11 M12

M21 M22

� �
�U�T, �14�

where the submatrices [M11], [K11], [K21] are determined by equations (10), (11)
and (12).
Now, the best modi®cation result which satis®es the following de®nition will

be discussed.

De®nition. Let [M0], [K0] be the mass matrix and the stiffness matrix of the
analytical model, then matrices ��M̂�, �K̂�� 2 G are said to be the best
approximation updated matrices of [M0] and [K0] if ��M̂�, �K̂�� satisfy the
relation:

kN�K̂ÿ K0�NkF � kN�M̂ÿM0�NkF
� inf
��M�, jK��2G

�kN�Kÿ K0�NkF � kN�MÿM0�NkF�, �15�

i.e., ��M̂�, �K̂�� are the best approximation matrices of [M0], [K0] in set G, where
k.kF indicates the Frobenius norm [16] and [N] is the weight matrix. According
to the problem, the weight matrix can be the identity matrix, diagonal matrix, or
[M0]

±1/2 and [K0]
±1/2 .

Theorem. Given the mass matrix and the stiffness matrix of the analytical
model [M0] and [K0], then the best updated matrices ([M̂], [K̂]) that satisfy the
above de®nition in set G exist uniquely.

Proof. Since set G is a solution set of equations (1±3), then set G is a linear
subspace of SRn6n6SRn6n. Because set G is a convex set, and G is a ®nite
dimension set, set G is compact. According to the projection theorem (see
Appendix) of the inner product spaces [17], it can be concluded that there exists
a unique best updated ([M̂, [K̂]) for [M0] and [K0] in set G.
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The above theorem indicates that the best update satisfying the de®nition for
the analytical model exists uniquely.
From equations (6), (7) and (15), one can obtain:

f �kN�Kÿ K0�N2k2F � kN�MÿM0�Nk2F

� N U
K11 K12

K21 K22

� �
UT ÿ �K0�

� �
N

���� �������� ����2
F

� N U
M11 M12

M21 M22

� �
UT ÿ �M0�

� �
N

���� �������� ����2
F

: �16�

Expressing the orthogonal matrix [U] in the blocked form:

�U� � �U1 : U2� �17�
Substituting equation (17) into equation (16) yields:

f � tr��N��U1��K11��U1�T�N�2�U1��K11��U1�T�N�

� 4�N��U1��K11��U1�T�N�2�U2��M21��D1��U1�T�N�

� 2�N��U1��K11��U1�T�N�2�U2��K22��U2�T�N�

ÿ 2�N��U1��K11��U1�T�N�2�K0��N�

� 4�N��U1��D1�T�M21�T�U2�T�N�2�U2��M21��D1��U1�T�N�

� 4�N��U2��M21��D1��U1�T�N�2�U2��K22��U2�T�N�

ÿ 4�N��U2��M21��D1��U1�T�N�2�K0��N�

ÿ 2�N��U2��K22��U2�T�N�2�K0��N�

� �N��U2��K22��U2�T�N�2�U2��K22��U2�T�N�

� �N��K0��N�2�K0��N��

� tr��N��U1��M11��U1�T�N�2�U1��M11��U1�T�N�

� 4�N��U1��M21�T�U2�T�N�2�U2��M21��U1�T�N�

� �N��U1��M21�T�U2�T�N�2�U2��M21��U1�T�N�

� �N��M0��N�2�M0��N�

� 4�N��U1��M11�T�U1�T�N�2�U2��M21��U1�T�N�

� 2�N��U1��M11�T�U1�T�N�2�U2��M22��U2�T�N�
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ÿ 2�N��U1��M11��U1�T�N�2�M0��N�

� 4�N��U2��M21�T�U1�T�N�2�U2��M22��U2�T�N�

ÿ 4�N��U2��M21�T�U1�T�N�2�M0��N�

ÿ 2�N��U2��M22��U2�T�N�2�M0��N��, �18�

where

�D1� � �D��V�T�L��V�ÿT�D�ÿ1 �19�
Differentiate equation (18) with respect to matrices [K22], [M22], [M21] and let

them equal zero. One can obtain:

�K22 � �A�ÿ1��U2�T�N�2�K0��N�2�U2� ÿ �C��K11��C�T

ÿ 2�C��D1�T�M21�T�A���A�ÿ1, �20�

�M22� � �A�ÿ1��U2�T�N�2�M0��N�2�U2� ÿ �C��K11��C�T

ÿ 2�C��M21�T�A���A�ÿ1, �21�

�M21� � 1
2�A�ÿ1��U2�T�N�2�M0��N�2�U1� ÿ �C��K11��B��D1�T

� �U2�T�N�2�K0��N�2�U1��D1�T ÿ �C��M11��B�

ÿ �U2�T�N�2�K0��N�2�U2��A�ÿ1�C��D1�T

ÿ �U2�T�N�2�M0��N�2�U2��A�ÿ1�C� � �C��M11��C�T�A�ÿ1�C�

� �C��K11��C�T�A�ÿ1�C��D1�T���B� � �D1��B��D1�T

ÿ �D1��C�T�A�ÿ1�C��D1�T ÿ �C�T�A�ÿ1�C��ÿ1, �22�

where

�A� � �U2�T�N�2�U2�,

�B� � �U1�T�N�2�U1�,

�C� � �U2�T�N�2�U1�:

When the weight matrix is the identity matrix, equations (20), (21) and (22)
can be simpli®ed as:

�K22� � �K022� � �U2�T�K0��U2�, �23�
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�M22� � �M022� � �U2�T�M0��U2�, �24�

�M21� � 1
2 ��U2�T�M0��U1� � �U2�T�K0��U1��D1�T��Im � �D1��D1�T�ÿ1: �25�

From the results, the following conclusion is obtained.

Conclusion 2. Given the mass matrix and the stiffness matrix of the analytical
model [M0] and [K0], the best updated matrices ([M̂], [K̂]) that satisfy the
de®nition in set G exist uniquely. The updated results can be expressed as:

�M̂� � �U� �D�
T�D�ÿ1 M̂T

21

M̂T
21 M̂22

� �
�U�T, �26�

�K̂� � �U� �D�
ÿT�V�T�L��V�ÿT�D�ÿ1 DT

1 M̂
T
21

M̂T
21D1 K̂22

� �
�U�T, �27�

where [K̂22], [M̂22], [M̂21] are calculated from equations (20), (21) and (22).
According to conclusions 1 and 2, the basic updating algorithm can be

summarized as follows.

Algorithm 1
(1) Obtain the initial mass matrix and stiffness matrix of the analytical model

using the ®nite element method etc.
(2) Obtain the modal parameters [F] and [L] from mode tests.
(3) Decompose matrix [F] using the singular-value decomposition technique,

and calculate the terms: [U]T[K0][U] and [U]T[M0][U].
(4) Calculate [K̂22], [M̂22], and [M̂21] from equations (20), (21) and (22);
(5) Calculate [M̂] and [K̂] from equations (26) and (27).

From algorithm 1 it is known that the modi®cation results [M̂] and [K̂] are full
matrices. In order to make matrices [M̂] and [K̂] have the same band form as
that of [M0] and [K0], an iterative algorithm is developed based on algorithm 1.

Algorithm 2
(1) Calculate [M̂]p and [K̂]p using algorithm 1 according to the given terms [F],

[L], [M0] and [K0], where p is the iterative number,
(2) Ignore the elements of the matrices [M̂]p and [K̂]p that do not belong to the

band of the matrices [M0] and [K0]. The new matrices are named [M]p and [K]p .
(3) Calculate [F]T[M]p[F]� [m]p and [F]T[K]p[F]� [k]p .
(4) Determine if the following condition is satis®ed:

jmijjEe1, jkijjEe2, i, j � 1, 2, . . . , m, i 6� j, �28�

where e1 and e2 are two prescribed tolerances If the condition (28) has been
satis®ed, then the iteration is ®nished. Otherwise let [M0]� [M]p , [K0]� [K]p , and
go back to step (1).
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3. NUMERICAL EXAMPLES

Several numerical examples are presented to demonstrate the feasibility of the
model updating method.

Example 1. A lumped mass matrix and a ®nite element stiffness matrix were
developed as an analytical model. The two matrices are as follows:

�M0� � diag�2�1, 1�9, 1�1, 0�9�,

�K0� �

5�1 ÿ4�0 1�0 0�0
ÿ4�0 6�1 ÿ4�0 1�0
1�0 ÿ4�0 6�1 ÿ4�0
0�0 1�0 ÿ4�0 5�1

26664
37775:

The ®rst two modal parameters are shown in Table 2. Table 1 gives the
modi®cation results of the Berman method [4] and algorithm 1 of the new
method.
The relative errors of eigenvalues and eigenvectors are as follows [13]:

relative error of eigenvalue � jot ÿ oj
ot

6100%, �29�

relative error of eigenvector � k Ft ÿ F k
k Ft k

� �1=2

6100%, �30�

where ot and {Ft} are the experimental results, and o and {F} are the analytical
results.
Table 2 indicates that the modi®catory accuracy of the presented method is

signi®cantly improved when compared with the Berman method. Substituting

TABLE 1

Modification results of the mass matrix and stiffness matrix

Model
updating Results of mass Results of stiffness
method matrix matrix

Berman 2�0912 ÿ0�0028 0�0044 0�0044 5�1679 ÿ4�0488 0�9097 0�0668
AMI 0�0028 1�8993 0�0016 0�0016 ÿ4�0488 6�0373 ÿ4�0276 1�0191
method 0�0044 0�0016 1�0981 ÿ0�0020 0�9097 ÿ4�0276 6�1274 ÿ4�0531

0�0044 0�0016 ÿ0�0020 0�8979 0�0668 1�0191 ÿ4�0531 4�9712
The new 2�0640 ÿ0�0008 0�0358 ÿ0�0011 5�0736 ÿ4�0434 0�9842 0�0330
method ÿ0�0008 1�9031 ÿ0�0003 ÿ0�0131 ÿ4�0434 6�0383 ÿ4�0275 1�0095

0�0358 ÿ0�0003 1�0613 0�0019 0�9842 ÿ4�0275 6�0735 ÿ4�0437
ÿ0�0011 ÿ0�0131 0�0019 0�9587 0�0330 1�0095 ÿ4�0437 5�0145
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the results from Table 1 into equation (18), one can obtain the Frobenius norm
of the Berman method fBERMAN , and the Frobenius norm of the new method
fSVD as follows:

fBERMAN � 0�2665033, fSVD � 0�2521787: �31�

From equation (31) it is known that fBERMAN> fSVD , which indicates that the
modi®cation result of the Berman method is not the best modi®cation result for
the analytical model.
In order to test the ability of modifying a larger error model for the new

method of this paper, the errors of matrices [M0] and [K0] are ampli®ed as
follows:

TABLE 4

Comparison of the modal parameters before and after modification

Relative errors (%)z����������������������}|����������������������{
Algorithm 1 Algorithm 1

Modal Analytical Tested of the Analytical of the
parameters model value new method model new method

Eigenvalues (Hz) 1 9�19493 8�99104 8�99104 2�27 0�0
2 25�20976 27�85248 27�85248 9�49 0�0

0�63745 0�62550 0�62550
0�63408 0�62079 0�62079
0�61390 0�60206 0�60206
0�58722 0�57881 0�57881

1 0�52944 0�51779 0�51779 3�12 0�0
0�46604 0�44898 0�44898
0�39770 0�37679 0�37679
0�31251 0�29137 0�29137
0�21076 0�19498 0�19498
0�10566 0�09761 0�09761

Eigenvectors
ÿ0�59230 ÿ0�58377 ÿ0�58377
ÿ0�56871 ÿ0�54160 ÿ0�54160
ÿ0�43188 ÿ0�38207 ÿ0�38207
ÿ0�26065 ÿ0�19495 ÿ0�19495

2 0�01439 0�11421 0�11421 16�13 0�0
0�28827 0�40688 0�40688
0�53920 0�67015 0�67015
0�61833 0�70753 0�70753
0�45122 0�48939 0�48939
0�23019 0�24767 0�24767



770 ZHANG XIANMIN

�M0� � diag�2�4, 1�7, 1�5, 0�8�,

�K0� �

5�5 ÿ4�2 1�1 0�0
ÿ4�2 6�7 ÿ4�3 1�0
1�0 ÿ4�3 6�5 ÿ4�4
0�0 1�0 ÿ4�4 5�6

26664
37775:

The two matrices are modi®ed on the basis of the ®rst two modal eigenvalues
and eigenvectors listed in Table 2. The comparisons are shown in Table 3, which
indicate that algorithm 1 of the new method reproduces the eigenvalues and
eigenvectors accurately once again, and the Berman method possesses larger
modi®cation errors.

Example 2. The ®rst two eigenvalues and eigenvectors of the system are tested
and listed in Table 4. The mass matrix of the analytical model is as follows:

�M0� � diag�0�1, 0�5, 0�2, 1�0, 0�2, 0�2, 0�8, 1�0, 0�3, 0�1�

TABLE 5

Modal parameters before and after modification of algorithm 2

Algorithm 2 Relative errors (%)
Modal Analytical Tested of the z����������������������}|����������������������{

parameters model value new method Analytical Algorithm 2

Eigenvalues (Hz) 1 9�19493 8�99104 9�09650 2�27 1�17
2 25�20976 27�85248 27�50197 9�49 1�26

0�63745 0�62550 0�62550
0�63408 0�62079 0�62079
0�61390 0�60206 0�60206
0�58722 0�57881 0�57881

1 0�52944 0�51779 0�51779 3�12 0�49
0�46604 0�44898 0�44898
0�39770 0�37679 0�37679
0�31251 0�29137 0�29137
0�21076 0�19498 0�19498
0�10566 0�09761 0�09761

Eigenvectors
ÿ0�59230 ÿ0�58377 ÿ0�58377
ÿ0�56871 ÿ0�54160 ÿ0�54160
ÿ0�43188 ÿ0�38207 ÿ0�38207
ÿ0�26065 ÿ0�19495 ÿ0�19495

2 0�01439 0�11421 0�11421 16�13 1�26
0�28827 0�40688 0�40688
0�53920 0�67015 0�67015
0�61833 0�70753 0�70753
0�45122 0�48939 0�48939
0�23019 0�24767 0�24767
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4. CONCLUSION

A new analytical model updating method is developed on the basis of the
theory of the singular-value decomposition and the matrix approximation
technique. In this method, the identi®ed modal matrix is decomposed by means
of the singular-value decomposition technique. The general updating equations
for the analytical model are obtained according to the decomposition results, the
eigenequation of the system, as well as the modal orthogonality relations. The
existence and uniqueness of the best approximation relative to the analytical
model are studied, and two model updating algorithms are presented. Examples
demonstrate that the new model updating method is effective, and possesses the
ability to modify larger error models.
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APPENDIX:

Theorem (the projection theorem) [17]. Let W be a closed subspace of a
Hilbert space H and let X2H be a vector not in W. Then there exists a unique
vector Y02W such that

d�X, W� � inf
Y2W
kXÿ Yk�kXÿ Y0k :

Proof. Choose a sequence of vectors Y(k)2W such that

lim
k41

kXÿ Y�k�k� d:

By the parallelogram law

kY�k� ÿ Y�j�k2 � 2kY�k� ÿ Xk2 � 2kY�j� ÿ Xk2 ÿ k�Y�k� ÿ X� � �Y�j� ÿ X�k2

� 2 kY�k� ÿ Xk2 � 2 kY�j� ÿ Xk2 ÿ4 Y�k� � Y�j�

2
ÿ X

���� �������� ����:
Since W is a linear subspace, 1

2(Y
(k)�Y(j))2W for all k, j and from the meaning

of d, it follows that

Y�k� � Y�j�

2
ÿ X

���� �������� ����ed,

giving

kY�k� ÿ Y�j�k2 E 2 kY�k� ÿ Xk2 � 2 kY�j� ÿ Xk2 ÿ4d 2:

Since

kY�k� ÿ Xk2 4 d 2

as k!1, one may conclude that {Y(k)} is a Cauchy sequence in W. But W is a
closed subspace of the complete space H. Hence, the sequence has a limitY02W.
By the continuity of the norm, d�kY0ÿXk.
Suppose there is another vector Z02W such that d�kZ0ÿXk. Then

kY0 ÿ Z0k2 � 2kY0 ÿ Xk2 �2 kZ0 ÿ Xk2 ÿ kY0 � Z0 ÿ 2Xk2

� 4d 2 ÿ 4
Y0 � Z0

2
ÿ X

���� �������� ����E0,

which implies that Y0 is unique.
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